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ABSTRACT
Controlling robot formations represents one of the biggest open
challenges for the Robotics Community. Its importance is remarked
in awide range of applications from truck platooning to autonomous
robot-based parcel delivery. In this paper we propose a lightweight
decentralized solution for controlling a queue shaped leader-follower
turtlebot formation. In order to test our implementation, we perform
tests both in simulation and on real turtlebots1. The complexity of
the challenge we are tackling further increases due the fact that the
robots we use to evaluate our work are non-holonomic, meaning
they have limited controllable degrees of freedom.

CCS CONCEPTS
• Computer systems organization→ Robotic control; • Embed-
ded and cyber-physical systems → Robotic autonomy; Embed-
ded software;
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1 INTRODUCTION
Formation control represents nowadays one of the most important
research areas in mobile robotics. The gain in popularity of self-
driving vehicles and their increasing demand on the market, the
ubiquity of unmanned aerial vehicles (UAVs), and the necessity
of efficient fleets of autonomous underwater vehicles (AUVs) has
broadened the spectrum of formation-control scenarios.

To solve the formation control problem, three main approaches
have been outlined by literature: behavioural based, virtual struc-
ture based, and leader follower based approaches. In the leader
follower case, a designated leader moves along a trajectory while
the other robots are supposed to follow it preserving the formation
and a specified distance.
1Code could be found at https://github.com/ASolot/turtlebot3_formation
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One of the reference papers regarding leader-follower formation
addresses the control of non-holonomic robots and was published
by Consolini et al.[4]. In this paper concepts such as formation
stability were formalized. Other techniques such as using complex
laplacians [12], receeding-horizon schemes [1], or neuro-dynamic
approaches [13] were proposed in order to solve the problem.

However, tackling obstacle avoidance while still moving in for-
mation remains an open question. Existing work in this field could
be divided in two categories: learning-based approaches, and model-
based approaches. Learning based approaches are trying to leverage
the way humans take decisions by using machine learning, while
the model-based solutions rely on geometric rules and physics con-
siderations. One of the most representative model-based approach
is the velocity obstacles (VO) model [6].

Recent work, published by Karamouzas et al. in 2015 [11] is lever-
aging this approach, proposing the Formation Velocity Obstacles,
which allow anticipatory collision avoidance and prioritization of
formation reshaping. More recent papers published in 2018 are
proposing hybrid combination between RRT* and a generalized
version of VO in order to perform real-time non-holonoic robot
navigation in dynamic environments [2] with potential extension
to formations.

A leader-follower formation consists of a designated leaderwhich
moves along a trajectory, and follower robots which are supposed to
follow the leader preserving the formation and a specified distance.
For non-holonomic mobile robots formations, the task of following
the leader becomes extremely difficult given that robot inputs are
forced to satisfy suitable constraints. This restricts the set of possi-
ble paths and implicitly the formation’s shape, configuration, and
robustness.

In this work we simplify the generic task previously described
and we focus on maintaining a leader-follower queue formation
using a decentralized approach. We aim to control a number of
3 non-holonomic robots, each taking decisions based only on the
information provided by the on-board lidars, and acting accordingly
in order to follow either a human or another robot. Moreover,
we extend the approach to demonstrate robustness to dynamic
obstacles that might disrupt the formation.

To wrap up, the main contributions of our work are:

• We implemented two detection variants and two tracking
variants.

• We implemented two variant combinations of detection with
their respective tracking modules.

• We successfully tested and evaluated our work on real robots
in a real world scenario.

2 SYSTEM DESIGN
As part of this work we have designed a flexible navigation solution
wrapped into a ROS package named turtlebot3_formation. The
navigation system controls each turtlebot entity independently
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from others, and could be scaled to an arbitrary number of robots
thanks to ROS communication topics being clustered under robot-
specific name-spaces.

The system is able to work with plug-and-play detectors and
controllers, with the aim of supporting various input sensors, and
different formation control strategies. For the scope of the cur-
rent project we have developed two interchangeable detectors and
two interchangeable controllers. The implementation was done in
Python using the RosPy client library [3] for the Kinetic ROS target
distribution. The schematic representation of the control structure
is depicted in Figure 1.

Fig. 1: Our proposed modular detector - controller structure

The first detector-controller pair (A1-B1) leverages a lightweight
custom-built object tracker and a PID based go-to-goal controller,
aiming to provide a simple and fast method for controlling the
formation. The second approach (A2-B2) uses an off the shelf obsta-
cle detector ROS module by Mateusz Przybyla [14], and a Velocity
Obstacles based controller.

Given our problem definition, no formation supervisor was im-
plemented. Moreover, path planning algorithms were excluded due
to their computation time overheads, that would have significantly
slow down the overall system. Thus, the queue formation results
as an emergent property.

2.1 Detection
We define the detection problem as identifying and computing the
coordinates of objects such as legs, turtlebots, or other obstacles by
using the 2D lidar point cloud published by each robot.

2.1.1 Clustering-based detection. In order to solve the problem
of detecting legs and turtlebots based on laser scan data, we propose
a lightweight method that uses Density-based spatial clustering
(DBSCAN) [5].

The first step is to reduce computational complexity which is
correlated with the number of points to be clustered. We firstly
reduce the field-of-view to 140◦, and then we aggregate the original
data into 72 measurements having a resolution of 2◦ and a field-of
view cone of 1◦ per measurement. The result of this operation is
depicted in Figure 2.

The second step is to perform clustering and filter the clusters
based on parameters such as total number of points, maximum
distance between the points in the cluster, and distance from the
robot to the cluster. As it could be seen in Figure 3, this operation
filters down noise and other unwanted obstacles, the resulting

Fig. 2: The input laser points for the DBSCAN detector

clusters being considered as potential followable objects. Finally,
the coordinates of the closest cluster centroid are chosen as the
target object coordinates.

Fig. 3: The result of clustering based feet detection

2.1.2 Dynamic detection and tracking. Given the simplicity
and the limitations of our proposed method, we have considered a
second option for performing obstacle detection and target iden-
tification. The method was proposed by Mateusz Przybyla in [14]
which is openly available on github2 and makes use of a Kalman
filter for object tracking and object speed detection. The algorithms
run using separate ROS nodes, which publish the object coordinates,
speeds, and sizes using a custom defined message type. The results
are depicted in Figure 4.

The target is identified using another implemented detector
which makes use of the published obstacle coordinates, their speed,
and their displacement between two successive detection. As a
result, tracking is performed consistently over time and with a
greater robustness to noise.

2https://github.com/tysik/obstacle_detector
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Fig. 4: The result of the advanced detection algorithm

2.2 Tracking
Given a target point within the robot’s field of view, we define the
tracking problem as ensuring that the robot follows the point while
keeping a constant distance from it.

2.2.1 Go-to-Goal PID. One of the most computationally effec-
tive method for solving the point-tracking problem represents im-
plementing a go-to-goal controller. In the case of a turtlebot, the
controllable parameters over time are the linear speed u and an-
gular velocityw . Thus, the tracking situation could be reduced to
the one depicted in Figure 5, where our go-to-goal controller aims
to minimize the distance error and the heading error between the
robot and the target.

Fig. 5: Go-to-goal problem formulation for a turtlebot

In practice, this controller could be implemented following the
Equations 1 and 2 as two independent PID controllers. In certain
situation, an artificial relation between the two parameters eu and
ew could be created by formulating the distance error control as a
horizontal displacement control problem: eunew = eucos(ew ). This
ensures smoother reactions to sideways movement of targets.

u[k] = Kpu eu [k] + Kiu

k−1∑
t=0

eu [t] + Kdu (eu [k] − eu [k − 1]) (1)

w[k] = Kpw ew [k] + Kiw

k−1∑
t=0

ew [t] + Kdw (ew [k] − ew [k − 1]) (2)

2.2.2 Velocity Obstacles. For an environment cluttered with
moving obstacles, the approach previously presented would not
perform reasonably as it ignores all other objects apart from the
target. Thus, to solve this problem, we propose to use a modified
version of the Reciprocal Velocity Obstacles for Real-Time Multi-
Agent Navigation proposed by Van den Berg et al. [15] and available
on github [8].

The Velocity Obstacles approach, as defined in Figure 6 works
based on the following principle: during a planning cycle, the agent
picks a velocity that is not intersecting any of the velocity obstacles
induced by the moving obstacles. The velocity chosen guarantees
safe navigation towards the goal only if the chosen velocity is
directed to the agent’s goal position. In the Reciprocal Velocity
Obstacles case, the idea behind is to choose a new velocity that is
the average of its current velocity and a velocity that lies outside
the other agent’s velocity obstacle. Thus, this new method provides
a simple approach to safely and smoothly navigate multiple agents
among each other without explicit communication between them.

Fig. 6: The Velocity Obstacle of a disc-shaped obstacle B to a
disc-shaped agent A

We configure the available implementation to use the Veloc-
ity Obstacles approach while solving the multi-agent problem, as
moving obstacles would not adjust their speed in order to avoid a
potential collision. Moreover, given that our scenario would not
imply symmetrical collision-avoidance strategies, we are not going
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to be influenced by the main downside of plain Velocity Obsta-
cles which is the generation of oscillatory motions leading to slow
convergence.

Using the A2 detector, we obtain all the coordinates and speeds of
the obstacles, and feed them into the RVO algorithm. All the values
are expressed in the coordinate system of the moving robot, which
is considered to be continuously located in the origin. The resulting
feasible speed for our robot, which is expressed as a raw speed
vector, is then transformed using feedback-liberalization (Equations
3 and 4) into a valid u andw command. In the mentioned equations,
ϵ denotes the distance between the robot and the holonomic point
for which the raw speeds were computed, and yaw represents in this
case the slope of the line determining the speed vector’s direction.

u = vxcos(yaw) +vysin(yaw) (3)

ω = ϵ−1(−vx sin(yaw) +vycos(yaw) (4)

2.3 Map merging
During the testing phase, we realized that unifying the visualization
of the obstacles detected by all the robots in the formation was nec-
essary. Thus, we have decided to use the multirobot_map_merge
[10] ROS package to create a merge between the maps generated
independently by our robots. To maintain flexibility between simu-
lation and real-world deployment, we have opted for map merging
without known initial position. The results are depicted in Figure
4.

3 EVALUATION
3.1 Methodology
Weperform a set of experiments for each proposed detector-controller
pair. We aim to (1) test the navigation capabilities of our forma-
tion in an environment with static obstacles, and (2) test formation
robustness to dynamic obstacles.

All of the experiments were firstly performed in simulation en-
vironment. Due to physical constraints such as latency issues that
were severely limiting the performance, only the navigation test
using the A1-B1 pair was performed on real robots.

3.2 Launching an experiment
The code is structured as a ROS package. Detailed instructions
on how to install and configure the package could be found in
the Readme file from our github repository. To ease experiment
deployment, we have created a bash script called deploy.sh which
is responsible of triggering all the necessary software.

3.2.1 Simulation experiment. In order to run a simulation ex-
periment, open a terminal in the root folder of the turtlebot3_formation
package, and run ./deploy.sh. The bash script will automatically
launch the Gazebo environment, the RViz visualizer, and the python
navigation scripts for the three turtlebots. To edit navigation re-
lated parameters, open the deploy.sh and edit the arguments with
which the ros/navigation.py python script is called.

3.2.2 Real-world experiment. In order to run a real-world ex-
periment, follow the same steps as above, and run ./deploy.sh

real. The bash script will automatically launch the RViz envi-
ronment, the ROS Master, the clock synchronization script, the
navigation control scripts, it will configure the network addresses
and will launch the ssh connections to the robots. However, due
to security reasons, the password and the automatically generated
robot-specific commands should be copy-pasted manually in the
robot terminals.

3.3 Results
3.3.1 Navigation in formation.

A1-B1 Configuration. For this specific configuration, we eval-
uated how theKp ,Ki , andKd parameters of the two PID controllers
impact the overall navigation performance.

One instant remark is that for the distance PID, the distance
error could never become negative. Thus, the integral member of
the equation would grow unbounded, and the motors would get
stuck with a saturated command. As a consequence, we do not
allow setting any Kiu , 0.

In the first run of our experiments, we begin with Kpu = 1.2 and
Kpw = 0.5, and all other constants set to 0. The PID responses of
the demo presented in the video could be seen in the Figures 7 and
8.

Fig. 7: P controller response for Kpu = 1.2

For high values of the Kp coefficient we observe in Figure 7 that
the controller saturates fast. This behaviour is undesired as it results
in shocks that could potentially damage the motors. Even though
the saturation problem is less visible in the angle case (Figure 8),
we decided to lower both proportional coefficients.

Apart from lowering the Kp coefficients to Kpu = 0.6 and Kpw =
0.1, we have also introduced an integral coefficient for the angle
controller, in order to solve the stationary error problem that could
be seen in Figure 8. The results are depicted in Figures 9 and 10.

We have neglected to introduce a derivative component as part
of our controllers due to noise related concerns. As the derivative
component has the role of reacting to the variation of the error,
this could lead to spikes of the output command in the real world
environment which is dominated by noisy measurements.
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Fig. 8: P controller response for Kpw = 0.5

Fig. 9: P controller response for Kpu = 0.6

Fig. 10: PI controller response for Kpw = 0.1 and Kiw = 0.01

In simulation, using the previously tuned controller, we managed
to control effortlessly the formation around the obstacle track. The
results could be seen in Figure 11.

Fig. 11: Example of formation control around the obstacle
course using the A1-B1 configuration

However, in the real world deployment of this scenario we ob-
served that the already tuned parameters were no longer suitable
for the task. Thus we needed to re-tune the controllers in order to
obtain an acceptable behaviour. We managed to run the control
loop at 5 Hz and the target detection loop at 3.3 Hz for the three
turtlebots. The results could be seen in the attached video.

A2-B2 Configuration. In the absence of obstacles, the Velocity
Obstacles based controller moves the robots using the maximum
allowable speed. During the simulations we observed steep transi-
tions from 0 to maximum speed each time the target was moving
rapidly. This aspect represents a severe inconvenience for a real-
world deployment and needs to be addressed by implementing a
smoothing function for start-stop. However, the formation is kept
with better performance than in the previous configuration, due to
a fast response to drastic target position changes.

3.3.2 Robustness to dynamic obstacles. In this test, we as-
sessed how the formation is influenced by dynamic obstacles.

A1-B1 Configuration. Given neither the detector nor the con-
troller are taking into consideration moving obstacles and their
speeds, this configuration shows little robustness to dynamic obsta-
cles. Usually obstacles would trigger a halt, and the robots would
break the formation, as it could be seen in Figure 12

A2-B2 Configuration. Even though promising, the method
showed little robustness to dynamic obstacles. Due to the formation
nature and the target detection system, after adjusting the trajec-
tory in order to avoid collision, the robot will mistakenly identify
the obstacle as the new target. Thus, the robustness could be tested
only given specific scenarios in which the robots would not be
kidnapped by the obstacle.

4 FUTUREWORK
Using lightweight local path planning techniques such as Optimal
Trajectory Generation using Frenet Frames [16], or the Dynamic
window approach [7] might offer a more robust alternative in the
context of target positioning failure. However, due to the fact that
we focused our effort on designing a decentralized control scheme,
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Fig. 12: Formation disruption by a dynamic obstacle for the
A1-B1 configuration

we decided to leave the optimization of the path planning as a fu-
ture work. A further improvement could consist in the deployment
of parts of the computational workload directly on the turtlebots, in
order to remove the latency of the link between the computational
nodes and the robots. Moreover, our evaluation was carried out
in a controlled laboratory environment. Thus, no real-world net-
work intermittent behaviour is accounted. In order to address this
open issue, we plan to use our delay-tolerant robot-communication
protocol. This could be a turning point for one of the future ap-
plications we envision, where instead of following human beings,
ground vehicles follow aerial robots and/or emergency vehicles in
critical situations as rescue applications.

5 FINAL REMARKS
As shown in the evaluation part, we have successfully managed to
implement a lightweight decentralized solution for controlling a
queue shaped leader-follower turtlebot formation. However, this
was possible only in the case of the A1-B1 detector-controller pair
and under the assumption that no dynamic obstacles are present in
the environment.

The inaccuracies of the proposed detectors were the main con-
tributors to the low performance of the velocity obstacles method.
Moreover, given we are operating in a decentralized manner, the
lack of a method that would predict the target’s next location based
on previous poses in the case of a laser obstruction has conse-
quences such as robot kidnapping by moving obstacles.

Differences between the simulation and the real world experi-
ments were also noticed. Firstly, all the simulation-tuned controller
parameters had to be re-tuned for the real-world approach. Sec-
ondly, due to the fact that the computational nodes were run on a
separate device, time overheads were introduced between the mea-
surement events and the reaction events. The effect of this issue
was clear: delays, slow and non-consistent feedback loops as we
got farther away from the router.

Sensors posed another challenge for achieving good results.
While lidars are very accurate on obstacle positions, they are less
accurate on detecting their velocities. Thus, avoiding dynamic obsta-
cles while maintaining the formation represents a complex problem.
Novel approaches such as sensor fusion between lidars and radars
were recently proposed by Hatem et al in [9] in order to overcome
this issues.

Additional approaches to get reliable distance information such
as using a Kinect generated point clouds were also considered. Even
though promising results were obtained using both ppl_detection3
and cob_people_detection4 packages, we decided not to include
a Kinect in our final solution due to size and power consumption
constraints.
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